Skip to content

API

Methods

resolve

resolve_<field> methods can be async. Resolver will recursively execute resolve_<field> methods on child nodes to fetch data.

class Blog(BaseModel):
    id: int

    comments: list[str] = []
    def resolve_comments(self):
        return ['comment-1', 'comment-2']

    tags: list[str] = []
    async def resolve_tags(self):
        await asyncio.sleep(1)
        return ['tag-1', 'tag-2']

Supported parameters:

  • context: global context, set on Resolver
  • ancestor_context: local context, configured in __pydantic_resolve_expose__
  • parent: parent node
  • dataloader: you can declare multiple dataloaders, e.g. loader=Loader(SomeLoader), loader_b=Loader(AnotherLoader)

post

post_<field> methods can be sync or async. They run after the data of descendants is fully processed, and are used for post-processing the resolved data.

class Blog(BaseModel):
    id: int

    comments: list[str] = []
    def resolve_comments(self):
        return ['comment-1', 'comment-2']

    def post_comments(self):
        return self.comments[-1:] # keep the last one

Supported parameters:

  • context: global context, set on Resolver
  • ancestor_context: local context, configured in __pydantic_resolve_expose__
  • parent: parent node
  • dataloader: you can declare multiple dataloaders, e.g. loader=Loader(SomeLoader), loader_b=Loader(AnotherLoader)
  • Note: objects returned from post will NOT be recursively resolved again. This is different from resolve.
  • collector: you can declare multiple collectors, e.g. collector_a=Collector('a'), collector_b=Collector('b')

post_default_handler

post_default_handler is a special post method. It runs after all other post methods have finished. It is useful for cleanup or finalization logic.

Note: it does not do any automatic assignment. You must set fields manually.

class Blog(BaseModel):
    id: int

    length: int

    def post_default_handler(self):
        self.length = 100

Supported parameters:

  • context: global context, set on Resolver
  • ancestor_context: local context, configured in __pydantic_resolve_expose__
  • parent: parent node
  • collector: you can declare multiple collectors, e.g. collector_a=Collector('a'), collector_b=Collector('b')

Resolver

The entry point of pydantic-resolve.

class Resolver:
    def __init__(
            self,
            loader_params: Optional[Dict[Any, Dict[str, Any]]] = None,
            global_loader_param: Optional[Dict[str, Any]] = None,
            loader_instances: Optional[Dict[Any, Any]] = None,
            context: Optional[Dict[str, Any]] = None
            debug: bool = False
            enable_from_attribute_in_type_adapter = False,
            annotation: Optional[Type[T]] = None
            ):

loader_params

Provide parameters for DataLoaders.

resolver = Resolver(loader_params={ LoaderA: { "param_x": 1, "param_y": 2 } })

global_loader_param

Set DataLoader parameters globally. This can be convenient in some cases.

resolver = Resolver(global_loader_param={ { "param_x": 1, "param_y": 2 } })

If parameters come from multiple sources:

resolver = Resolver(
    loader_params={ LoaderA: { "param_x": 2 } },
    global_loader_param={ { "param_x": 1, "param_y": 2 } })

it will raise an error.

loader_instances

You can pass DataLoader instances (for example, pre-primed with data).

loader = LoaderA()
loader.prime('a', [1,2,3])
resolver = Resolver(loader_instances={ LoaderA: loader })

context

Provide global context. It is accessible in all resolve_* and post_* methods.

resolver = Resolver(context={'name': 'tangkikodo'})

debug

When debug=True, the logger prints the total elapsed time per node.

export PYDANTIC_RESOLVE_DEBUG=true enables it globally.

# sample
Tree          : avg: 1.1ms, max: 1.1ms, min: 1.1ms
Tree.Tree     : avg: 0.4ms, max: 0.5ms, min: 0.4ms
Tree.Tree.Tree: avg: 0.2ms, max: 0.2ms, min: 0.2ms

# sample
MyBlogSite             : avg: 1.5ms, max: 1.5ms, min: 1.5ms
MyBlogSite.Blog        : avg: 1.0ms, max: 1.0ms, min: 1.0ms
MyBlogSite.Blog.Comment: avg: 0.3ms, max: 0.3ms, min: 0.3ms

enable_from_attribute_in_type_adapter (pydantic v2)

Only for pydantic v2. It mainly solves (as a fallback) potential upgrade issues from v1.

export PYDANTIC_RESOLVE_ENABLE_FROM_ATTRIBUTE=true enables it globally.

In v1, converting from a Pydantic object that is NOT the target field type (but still has the required fields) can work via parse_obj_as. In v2, TypeAdapter will raise an error.

class A(BaseModel):
  name: str
  id: int

class B(BaseModel):
  name: str

In v2, you can use typeAdapter.validate_python(data, from_attribute=True) as a fallback. But it can add 10%+ overhead for conversions, so the default is False. Enable it only when needed.

annotation

Specify the root type when resolving. When the input data is a list of Union types, the root type cannot be inferred automatically; use this parameter to set it explicitly.

ErDiagram

ErDiagram is a new feature in v2. You can declare application-level ERDs to model your business domain more precisely.

Related classes:

  • Relationship: when two Entities have only one relationship; defines the field, target type, and default dataloader
  • MultipleRelationship: when two Entities can have multiple relationships; you need to define an extra Link to describe the semantics and dataloader
  • Entity: entity metadata; not required if you use BaseEntity
  • Link: defines business semantics and the dataloader

Related methods:

  • base_entity: a metaclass factory. After inheriting from it, you can declare relationships inside the class. It collects all relationship info, accessible via BaseEntity.get_diagram().
  • config_resolver: if you have multiple ERDs, generate a new Resolver class
  • config_global_resolver: inject the ERD into the default Resolver class

Usage:

  • LoadBy: add LoadBy via Annotated to automatically find the required relationship and dataloader

For now, check tests/er_diagram/test_er_diagram.py for usage examples.

Method Parameter Reference

context

context is a global context set on Resolver, and can be accessed by all methods.

class Blog(BaseModel):
    id: int

    comments: list[str] = []
    def resolve_comments(self, context):
        prefix = context['prefix']
        return [f'{prefix}-{c}' for c in ['comment-1', 'comment-2']]

    def post_comments(self, context):
        limit = context['limit']
        return self.comments[-limit:]  # get last [limit] comments

blog = Blog(id=1)
blog = await Resolver(context={'prefix': 'my', 'limit': 1}).resolve(blog)

ancestor_context

Sometimes you want to read data from ancestor nodes. Use ancestor_context for that.

First, add __pydantic_resolve_expose__ on the ancestor node to expose field names and aliases (to avoid collisions across levels).

Then you can read them from ancestor_context.

class Blog(BaseModel):
    __pydantic_resolve_expose__ = {'title': 'blog_title' }
    id: int
    title: str

    comments: list[Comment] = []
    def resolve_comments(self, loader=LoaderDepend(blog_to_comments_loader)):
        return loader.load(self.id)

    comment_count: int = 0
    def post_comment_count(self):
        return len(self.comments)

class Comment(BaseModel):
    id: int
    content: str
    def post_content(self, ancestor_context):
        blog_title = ancestor_context['blog_title']
        return f'[{blog_title}] - {self.content}'

Starting from v2.3.0, ExposeAs can replace __pydantic_resolve_expose__, they are exclusive

from pydantic_resolve import ExposeAs

class Blog(BaseModel):
    # __pydantic_resolve_expose__ = {'title': 'blog_title' }
    id: int
    title: Annotated[str, ExposeAs('blog_title')]

parent

You can access the direct parent node. This is especially useful for tree-like structures.

class Tree(BaseModel):
    name: str
    children: List[Tree] = []

    path: str = ''
    def resolve_path(self, parent):
        if parent is not None:
            return f'{parent.path}/{self.name}'
        return self.name

data = dict(name="a", children=[
    dict(name="b", children=[
        dict(name="c")
    ]),
    dict(name="d", children=[
        dict(name="c")
    ])
])
data = await Resolver().resolve(Tree(**data))

collector

collector lets you gather data across generations. It works with Collector and __pydantic_resolve_collect__.

On descendant nodes, define __pydantic_resolve_collect__ to specify which fields to provide and the collector alias.

With collector, you can reshape data without manually looping and flattening all descendants.

For example, you can collect comment data from each blog at the top-level schema.

form pydantic_resolve import Collector

class MyBlogSite(BaseModel):
    blogs: list[Blog] = []
    async def resolve_blogs(self):
        return await get_blogs()

    comment_count: int = 0
    def post_comment_count(self):
        return sum([b.comment_count for b in self.blogs])

    all_comments: list[Comment] = []
    def post_all_comments(self, collector=Collector(alias='blog_comments', flat=True)):
        return collector.values()

class Blog(BaseModel):
    __pydantic_resolve_expose__ = {'title': 'blog_title' }
    __pydantic_resolve_collect__ = {'comments': 'blog_comments' }
    id: int
    title: str

    comments: list[Comment] = []
    def resolve_comments(self, loader=LoaderDepend(blog_to_comments_loader)):
        return loader.load(self.id)

    comment_count: int = 0
    def post_comment_count(self):
        return len(self.comments)

class Comment(BaseModel):
    id: int
    content: str
    def post_content(self, ancestor_context):
        blog_title = ancestor_context['blog_title']
        return f'[{blog_title}] - {self.content}'

Notes:

  1. You can create multiple collectors.
  2. Collector uses a list internally to accumulate values. With flat=True, it uses extend to merge lists.
  3. You can implement your own collector by inheriting from ICollector.
from pydantic_resolve import ICollector

class CounterCollector(ICollector):
    def __init__(self, alias):
        self.alias = alias
        self.counter = 0

    def add(self, val):
        self.counter = self.counter + len(val)

    def values(self):
        return self.counter

collector can only be used in post and post_default_handler.

  • In post, you can collect descendant data from resolved fields or other object fields.
  • In post_default_handler, you can additionally collect descendant data from values returned by post methods.

** starting from v2.3.0, SendTo can replace pydantic_resolve_collect`**, they are exclusive.

from pydantic_resolve import ExposeAs, SendTo

class Blog(BaseModel):
    # __pydantic_resolve_expose__ = {'title': 'blog_title' }
    # __pydantic_resolve_collect__ = {'comments': 'blog_comments' }
    id: int
    title: Annotated[str, ExposeAs('blog_title')]

    comments: Annotated[list[Comment], SendTo('blog_comments')] = []
    def resolve_comments(self, loader=LoaderDepend(blog_to_comments_loader)):
        return loader.load(self.id)

dataloader

DataLoader can batch multiple concurrent async queries into a single request.

In pydantic-resolve, use LoaderDepend to manage DataLoaders.

Since v1.12.5, you can also use Loader. They are equivalent.

You can declare multiple DataLoaders in a single method.

from pydantic_resolve import LoaderDepend

class Blog(BaseModel):
    id: int
    title: str

    comments: list[Comment] = []
    async def resolve_comments(self,
                         loader1=LoaderDepend(blog_to_comments_loader),
                         loader2=LoaderDepend(blog_to_comments_loader2)):
        v1 = await loader1.load(self.id)  # list
        v2 = await loader2.load(self.id)  # list
        return v1 + v2

If a DataLoader defines class variables, you can pass parameters from Resolver.

class LoaderA(DataLoader):
    power: int
    async def batch_load_fn(self, keys: List[int]):
        return [ k** self.power for k in keys ]

data = await Resolver(loader_filters={LoaderA:{'power': 2}}).resolve(data)

If multiple DataLoaders of the same type use the same params, you can use global_loader_param to reduce boilerplate.

Use it carefully: global params can make configuration harder to reason about.

self._query_meta

It provides two pieces of information: fields and request_types. They describe the type info used after calling the dataloader.

This can help you narrow down the selected fields in the dataloader (e.g. SQL SELECT columns).

Because a single dataloader may be called by multiple request types, request_types is a list.

fields is the de-duplicated union of all request_types.fields.

class SampleLoader(DataLoader):
    async def batch_load_fn(self, keys):
        print(self._query_meta['fields']) # => ['id', 'name']
        print(self._query_meta['request_types']) # => [ {'name': Student, 'fields': ['id', 'name'] } ]

        data = await query_students(self._query_meta['fields'], keys)
        # select id, name from xxxxx

        return build_list(data, keys, lambda d: d.id)

class Student(BaseModel):
    id: int
    name: str

class ClassRoom(BaseModel):
    id: int
    name: str

    students: List[Student] = []
    def resolve_students(self, loader=LoaderDepend(SampleLoader)):
        return loader.load(self.id)

Helper Utilities

build_list, build_object

Used in a DataLoader to group fetched records by keys.

build_list returns a list of objects; build_object returns a single object.

Signature: build_list(data, keys, lambda d: d.key)

model_config

This decorator improves some web frameworks (like FastAPI) when generating JSON schema from response_model.

Using exclude=True can remove a field during Pydantic conversion, but in FastAPI-generated openapi.json, the field (e.g. name) may still appear in the schema definition. Adding the model_config() decorator can remove name from the schema.

Signature: model_config(default_required=True)

@model_config()
class Data(BaseModel):
    name: str = Field(default='', exclude=True)
from pydantic.dataclasses import dataclass

@dataclass
class Car:
    name: str
    used_years: int = field(default=0, metadata={'exclude': True})

Note: if you use pydantic v2 in FastAPI, FastAPI already handles similar behavior internally, so you may not need model_config.

ensure_subset

Signature: ensure_subset(base_kls)

If you only need a subset of fields but want to strictly ensure it is a valid subset, use ensure_subset.

If the base model changes and a field is no longer present, it raises AttributeError.

class Base(BaseModel):
    a: str
    b: int

@ensure_subset(Base)
class ChildA(BaseModel):
    a: str

mapper

Provides a conversion/mapping decorator.

class Data(BaseModel):
    id: int

    items: List[Item] = []

    @mapper(lambda x: do_some_conversion(x))
    def resolve_items(self, loader=LoaderDepend(ItemLoader)):
        return loader.load(self.id)

copy_dataloader_kls

Copy a DataLoader class. Useful when you need multiple parameterized DataLoaders with different parameters.

NewLoader = copy_dataloader_kls('NewLoader', OriginLoader)

Exceptions

  • ResolverTargetAttrNotFound: target field does not exist
  • LoaderFieldNotProvidedError: required Loader parameters are not provided in resolve
  • GlobalLoaderFieldOverlappedError: duplicated params between global_loader_params and loader_params
  • MissingCollector: the collector cannot be found; not defined on ancestor nodes