Skip to content

API

Methods

resolve

resolve_<field> methods can be async. Resolver will recursively execute resolve_<field> methods on child nodes to fetch data.

class Blog(BaseModel):
    id: int

    comments: list[str] = []
    def resolve_comments(self):
        return ['comment-1', 'comment-2']

    tags: list[str] = []
    async def resolve_tags(self):
        await asyncio.sleep(1)
        return ['tag-1', 'tag-2']

Supported parameters:

  • context: global context, set on Resolver
  • ancestor_context: local context, configured in __pydantic_resolve_expose__
  • parent: parent node
  • dataloader: you can declare multiple dataloaders, e.g. loader=Loader(SomeLoader), loader_b=Loader(AnotherLoader)

post

post_<field> methods can be sync or async. They run after the data of descendants is fully processed, and are used for post-processing the resolved data.

class Blog(BaseModel):
    id: int

    comments: list[str] = []
    def resolve_comments(self):
        return ['comment-1', 'comment-2']

    def post_comments(self):
        return self.comments[-1:] # keep the last one

Supported parameters:

  • context: global context, set on Resolver
  • ancestor_context: local context, configured in __pydantic_resolve_expose__
  • parent: parent node
  • dataloader: you can declare multiple dataloaders, e.g. loader=Loader(SomeLoader), loader_b=Loader(AnotherLoader)
  • Note: objects returned from post will NOT be recursively resolved again. This is different from resolve.
  • collector: you can declare multiple collectors, e.g. collector_a=Collector('a'), collector_b=Collector('b')

post_default_handler

post_default_handler is a special post method. It runs after all other post methods have finished. It is useful for cleanup or finalization logic.

Note: it does not do any automatic assignment. You must set fields manually.

class Blog(BaseModel):
    id: int

    length: int

    def post_default_handler(self):
        self.length = 100

Supported parameters:

  • context: global context, set on Resolver
  • ancestor_context: local context, configured in __pydantic_resolve_expose__
  • parent: parent node
  • collector: you can declare multiple collectors, e.g. collector_a=Collector('a'), collector_b=Collector('b')

Resolver

The entry point of pydantic-resolve.

class Resolver:
    def __init__(
            self,
            loader_params: Optional[Dict[Any, Dict[str, Any]]] = None,
            global_loader_param: Optional[Dict[str, Any]] = None,
            loader_instances: Optional[Dict[Any, Any]] = None,
            context: Optional[Dict[str, Any]] = None
            debug: bool = False
            enable_from_attribute_in_type_adapter = False,
            annotation: Optional[Type[T]] = None
            ):

loader_params

Provide parameters for DataLoaders.

resolver = Resolver(loader_params={ LoaderA: { "param_x": 1, "param_y": 2 } })

global_loader_param

Set DataLoader parameters globally. This can be convenient in some cases.

resolver = Resolver(global_loader_param={ { "param_x": 1, "param_y": 2 } })

If parameters come from multiple sources:

resolver = Resolver(
    loader_params={ LoaderA: { "param_x": 2 } },
    global_loader_param={ { "param_x": 1, "param_y": 2 } })

it will raise an error.

loader_instances

You can pass DataLoader instances (for example, pre-primed with data).

loader = LoaderA()
loader.prime('a', [1,2,3])
resolver = Resolver(loader_instances={ LoaderA: loader })

context

Provide global context. It is accessible in all resolve_* and post_* methods.

resolver = Resolver(context={'name': 'tangkikodo'})

debug

When debug=True, the logger prints the total elapsed time per node.

export PYDANTIC_RESOLVE_DEBUG=true enables it globally.

# sample
Tree          : avg: 1.1ms, max: 1.1ms, min: 1.1ms
Tree.Tree     : avg: 0.4ms, max: 0.5ms, min: 0.4ms
Tree.Tree.Tree: avg: 0.2ms, max: 0.2ms, min: 0.2ms

# sample
MyBlogSite             : avg: 1.5ms, max: 1.5ms, min: 1.5ms
MyBlogSite.Blog        : avg: 1.0ms, max: 1.0ms, min: 1.0ms
MyBlogSite.Blog.Comment: avg: 0.3ms, max: 0.3ms, min: 0.3ms

enable_from_attribute_in_type_adapter (pydantic v2)

Only for pydantic v2. It mainly solves (as a fallback) potential upgrade issues from v1.

export PYDANTIC_RESOLVE_ENABLE_FROM_ATTRIBUTE=true enables it globally.

In v1, converting from a Pydantic object that is NOT the target field type (but still has the required fields) can work via parse_obj_as. In v2, TypeAdapter will raise an error.

class A(BaseModel):
  name: str
  id: int

class B(BaseModel):
  name: str

In v2, you can use typeAdapter.validate_python(data, from_attribute=True) as a fallback. But it can add 10%+ overhead for conversions, so the default is False. Enable it only when needed.

annotation

Specify the root type when resolving. When the input data is a list of Union types, the root type cannot be inferred automatically; use this parameter to set it explicitly.

ErDiagram

ErDiagram allows you to declare application-level entity relationships at the domain model level, then automatically generate resolve methods based on these relationships.

Core Classes

Relationship

Defines a single relationship between two entities.

from pydantic_resolve import Relationship

class User(BaseModel):
    id: int
    name: str

class Comment(BaseModel):
    id: int
    user_id: int

    # Define relationship: load User via user_id
    __relationships__ = [
        Relationship(field='user_id', target_kls=User, loader=user_loader)
    ]

Parameters:

  • field (str): The foreign key field name
  • target_kls (type): The target Pydantic model class
  • loader (Callable): DataLoader function to fetch the target entity
  • field_fn (Callable | None): Optional function to transform the FK value before passing to loader
  • field_none_default (Any | None): Default value to return if FK is None
  • field_none_default_factory (Callable | None): Factory function to create default value if FK is None
  • load_many (bool): Whether to use load_many instead of load (for to-many relationships)
  • load_many_fn (Callable | None): Optional function to manually split FK values for load_many

MultipleRelationship

Defines multiple relationships between two entities under the same field.

from pydantic_resolve import MultipleRelationship, Link

class Comment(BaseModel):
    id: int
    user_id: int
    moderator_id: int

    # Define two relationships via user_id: author and moderator
    __relationships__ = [
        MultipleRelationship(
            field='user_id',
            target_kls=User,
            links=[
                Link(biz='author', loader=user_loader),
                Link(biz='moderator', loader=moderator_loader)
            ]
        )
    ]

Parameters:

  • field (str): The foreign key field name
  • target_kls (type): The target Pydantic model class
  • links (list[Link]): List of Link objects defining different relationships

Defines a single link in a MultipleRelationship.

Parameters:

  • biz (str): Business identifier to distinguish multiple relationships
  • loader (Callable): DataLoader function
  • field_fn (Callable | None): Optional function to transform FK value
  • field_none_default (Any | None): Default value if FK is None
  • field_none_default_factory (Callable | None): Factory for default value
  • load_many (bool): Whether to use load_many
  • load_many_fn (Callable | None): Manual split function for load_many
  • field_name (str | None): Specifies that the loader returns a field value from the target class, not the full object. Must be used with LoadBy(origin_kls=...) to indicate the original object type.

Example: If field_name="name", the loader returns list[str] (name field values) instead of list[Foo] (full objects). This is useful when you only need specific field values and want to avoid loading full objects.

Entity

Defines entity metadata including its relationships.

from pydantic_resolve import Entity

Entity(
    kls=Comment,
    relationships=[
        Relationship(field='user_id', target_kls=User, loader=user_loader)
    ]
)

Parameters:

  • kls (type[BaseModel]): The Pydantic model class
  • relationships (list[Relationship | MultipleRelationship]): List of relationships

ErDiagram

Container for all entity relationship definitions.

from pydantic_resolve import ErDiagram

ErDiagram(
    configs=[
        Entity(kls=Comment, relationships=[...]),
        Entity(kls=User, relationships=[...])
    ],
    description="My application ERD"
)

Parameters:

  • configs (list[Entity]): List of entity definitions
  • description (str | None): Optional description of the diagram

Usage

To use an ErDiagram with the Resolver, you need to register it using either config_resolver() or config_global_resolver():

  • config_resolver(diagram): Creates a new custom Resolver class with the ERD
  • config_global_resolver(diagram): Injects the ERD into the default Resolver class globally

See the Helper Functions section below for detailed usage examples.

Helper Functions

base_entity()

Creates a base class that automatically collects all entity relationships from its subclasses.

Note: BaseEntity provides an alternative ERD declaration approach compared to explicitly creating ErDiagram objects. This method is more tightly integrated with your entity classes, making it easier to manage relationships directly within the class definitions.

from pydantic_resolve import base_entity, Relationship

BaseEntity = base_entity()

class User(BaseModel, BaseEntity):
    id: int
    name: str

    __relationships__ = [
        Relationship(field='org_id', target_kls=Organization, loader=org_loader)
    ]

class Comment(BaseModel, BaseEntity):
    id: int
    user_id: int

    __relationships__ = [
        Relationship(field='user_id', target_kls=User, loader=user_loader)
    ]

# Get the ER diagram
diagram = BaseEntity.get_diagram()

Handling Circular Imports

Because entities reference each other through target_kls, you may encounter circular import issues. There are two solutions:

  1. Use string references (for same-module references):

    class Comment(BaseModel, BaseEntity):
        id: int
        user_id: int
    
        __relationships__ = [
            # String 'User' will be resolved automatically
            Relationship(field='user_id', target_kls='User', loader=user_loader)
        ]
    

  2. Use module path syntax (for cross-module references):

    # In app/models/comment.py
    
    class Comment(BaseModel, BaseEntity):
        id: int
        user_id: int
    
        __relationships__ = [
            # Reference User from another module
            Relationship(
                field='user_id',
                target_kls='app.models.user:User',  # module.path:ClassName
                loader=user_loader
            )
        ]
    

The _resolve_ref function supports:

  • Simple class names: 'User' (looked up in the current module)
  • Module path syntax: 'app.models.user:User' (lazy import from any module)
  • List generics: list['User'] or list['app.models.user:User']

LoadBy

  1. Annotation to automatically resolve fields based on ERD relationships.
from pydantic_resolve import LoadBy, base_entity, config_global_resolver

# 1. Define entities with BaseEntity
BaseEntity = base_entity()

class User(BaseModel, BaseEntity):
    id: int
    name: str
    __relationships__ = [
        Relationship(field='org_id', target_kls=Organization, loader=org_loader)
    ]
  1. Register ERD globally
config_global_resolver(BaseEntity.get_diagram())
  1. Use LoadBy in response models
class UserResponse(BaseModel):
    id: int
    name: str

    # Automatically resolves via ERD relationship
    organization: Annotated[Optional[Organization], LoadBy('org_id')] = None

Parameters:

  • key (str): The foreign key field name
  • biz (str | None): Business identifier for MultipleRelationship
  • origin_kls (type | None): Must be provided when the Link's field_name is set. Indicates the original object type before field extraction.

Note: LoadBy works with config_global_resolver() to inject the ERD into the default Resolver.

Using field_name with origin_kls

When a loader returns field values instead of full objects, use field_name in Link and origin_kls in LoadBy:

from typing import Annotated

# DataLoader that returns list[str] (name values) instead of list[Foo] (full objects)
class FooNameLoader(DataLoader):
    async def batch_load_fn(self, keys):
        # Returns: [["foo1", "foo2"], ["foo3"]]
        return [[vv['name'] for vv in v] for v in load_foo_names(keys)]

class Biz(BaseModel, BaseEntity):
    __relationships__ = [
        MultipleRelationship(
            field='id',
            target_kls=list[Foo],  # Original type is list[Foo]
            links=[
                Link(biz='foo_name', field_name="name", loader=FooNameLoader)  # But loader returns list[str] (name field)
            ]
        )
    ]

class BizResponse(BaseModel):
    # origin_kls tells the system the relationship is originally list[Foo]
    # even though the loader actually returns list[str]
    foo_names: Annotated[List[str], LoadBy('id', biz='foo_name', origin_kls=list[Foo])] = []

This allows the system to: - Correctly validate types (list[str] is compatible with list[Foo].name) - Generate proper API documentation - Provide type hints for fastapi-voyager

config_resolver()

Creates a new Resolver class with specific ERD configuration.

from pydantic_resolve import config_resolver, ErDiagram, Entity

diagram = ErDiagram(configs=[...])
CustomResolver = config_resolver(diagram)

result = await CustomResolver().resolve(data)

config_global_resolver()

Injects an ERD into the default Resolver class globally.

from pydantic_resolve import config_global_resolver, base_entity

BaseEntity = base_entity()
# ... define entities ...

config_global_resolver(BaseEntity.get_diagram())

# Now default Resolver will use the ERD
result = await Resolver().resolve(data)

Handling None FK Values

When a foreign key is None, you can specify what to return:

Relationship(
    field='user_id',
    target_kls=User,
    loader=user_loader,
    field_none_default=None,  # or
    field_none_default_factory=lambda: AnonymousUser()
)

When using load_many:

Relationship(
    field='tag_ids',
    target_kls=Tag,
    loader=tag_loader,
    load_many=True,
    load_many_fn=lambda ids: ids.split(',') if ids else []  # Handle comma-separated values
)

Multiple Relationships

When one field can mean different things, use MultipleRelationship:

class Comment(BaseModel, BaseEntity):
    id: int
    user_id: int  # Can be author OR moderator

    __relationships__ = [
        MultipleRelationship(
            field='user_id',
            target_kls=User,
            links=[
                Link(biz='author', loader=user_loader),
                Link(biz='moderator', loader=moderator_loader)
            ]
        )
    ]

class CommentResponse(BaseModel):
    id: int

    # Specify which relationship to use via the 'biz' parameter
    author: Annotated[Optional[User], LoadBy('user_id', biz='author')] = None
    moderator: Annotated[Optional[User], LoadBy('user_id', biz='moderator')] = None

DefineSubset & SubsetConfig

DefineSubset allows you to create a subset of fields from an existing Pydantic model, inheriting types and validators.

Basic Usage

from pydantic_resolve import DefineSubset

class FullUser(BaseModel):
    id: int
    name: str
    email: str
    password_hash: str
    created_at: datetime
    updated_at: datetime

class UserSummary(DefineSubset):
    __subset__ = (FullUser, ('id', 'name', 'email'))

Using SubsetConfig

For more control, use SubsetConfig:

from pydantic_resolve import DefineSubset, SubsetConfig
from pydantic_resolve import ExposeAs, SendTo

class UserProfile(DefineSubset):
    __subset__ = SubsetConfig(
        kls=FullUser,
        fields=['id', 'name', 'email'],
        expose_as=[('name', 'user_name')],  # Expose to descendants
        send_to=[('id', 'user_id_collector')],  # Send to parent's collector
        excluded_fields=['email']  # Mark as excluded from serialization
    )

SubsetConfig Parameters:

  • kls (type[BaseModel]): The parent class to subset from
  • fields (list[str] | "all" | None): Fields to include (mutually exclusive with omit_fields)
  • omit_fields (list[str] | None): Fields to exclude (mutually exclusive with fields)
  • expose_fields (list[str] | None): Fields to expose to descendants via ExposeAs
  • excluded_fields (list[str] | None): Fields to mark as excluded (Field(exclude=True))

ExposeAs & SendTo

Starting from v2.3.0, you can use annotations instead of class attributes for expose and collect.

ExposeAs

Expose field data to descendant nodes.

from pydantic_resolve import ExposeAs

# Before (class attribute)
class Blog(BaseModel):
    __pydantic_resolve_expose__ = {'title': 'blog_title' }
    title: str

# After (annotation)
class Blog(BaseModel):
    title: Annotated[str, ExposeAs('blog_title')]

SendTo

Send field data to parent node's collector.

from pydantic_resolve import SendTo

# Before (class attribute)
class Blog(BaseModel):
    __pydantic_resolve_collect__ = {'comments': 'blog_comments' }
    comments: list[Comment]

# After (annotation)
class Blog(BaseModel):
    comments: Annotated[list[Comment], SendTo('blog_comments')]

Combining Both

You can combine multiple annotations:

from pydantic_resolve import ExposeAs, SendTo, LoadBy

class Comment(BaseModel):
    owner: Annotated[
        Optional[User],
        LoadBy('user_id'),      # Auto-resolve via ERD
        SendTo('related_users') # Send to parent's collector
    ] = None

class Blog(BaseModel):
    name: Annotated[str, ExposeAs('blog_name')]  # Expose to descendants

Method Parameter Reference

context

context is a global context set on Resolver, and can be accessed by all methods.

class Blog(BaseModel):
    id: int

    comments: list[str] = []
    def resolve_comments(self, context):
        prefix = context['prefix']
        return [f'{prefix}-{c}' for c in ['comment-1', 'comment-2']]

    def post_comments(self, context):
        limit = context['limit']
        return self.comments[-limit:]  # get last [limit] comments

blog = Blog(id=1)
blog = await Resolver(context={'prefix': 'my', 'limit': 1}).resolve(blog)

ancestor_context

Sometimes you want to read data from ancestor nodes. Use ancestor_context for that.

First, add __pydantic_resolve_expose__ on the ancestor node to expose field names and aliases (to avoid collisions across levels).

Then you can read them from ancestor_context.

class Blog(BaseModel):
    __pydantic_resolve_expose__ = {'title': 'blog_title' }
    id: int
    title: str

    comments: list[Comment] = []
    def resolve_comments(self, loader=LoaderDepend(blog_to_comments_loader)):
        return loader.load(self.id)

    comment_count: int = 0
    def post_comment_count(self):
        return len(self.comments)

class Comment(BaseModel):
    id: int
    content: str
    def post_content(self, ancestor_context):
        blog_title = ancestor_context['blog_title']
        return f'[{blog_title}] - {self.content}'

Starting from v2.3.0, ExposeAs can replace __pydantic_resolve_expose__, they are exclusive

from pydantic_resolve import ExposeAs

class Blog(BaseModel):
    # __pydantic_resolve_expose__ = {'title': 'blog_title' }
    id: int
    title: Annotated[str, ExposeAs('blog_title')]

parent

You can access the direct parent node. This is especially useful for tree-like structures.

class Tree(BaseModel):
    name: str
    children: List[Tree] = []

    path: str = ''
    def resolve_path(self, parent):
        if parent is not None:
            return f'{parent.path}/{self.name}'
        return self.name

data = dict(name="a", children=[
    dict(name="b", children=[
        dict(name="c")
    ]),
    dict(name="d", children=[
        dict(name="c")
    ])
])
data = await Resolver().resolve(Tree(**data))

collector

collector lets you gather data across generations. It works with Collector and __pydantic_resolve_collect__.

On descendant nodes, define __pydantic_resolve_collect__ to specify which fields to provide and the collector alias.

With collector, you can reshape data without manually looping and flattening all descendants.

For example, you can collect comment data from each blog at the top-level schema.

form pydantic_resolve import Collector

class MyBlogSite(BaseModel):
    blogs: list[Blog] = []
    async def resolve_blogs(self):
        return await get_blogs()

    comment_count: int = 0
    def post_comment_count(self):
        return sum([b.comment_count for b in self.blogs])

    all_comments: list[Comment] = []
    def post_all_comments(self, collector=Collector(alias='blog_comments', flat=True)):
        return collector.values()

class Blog(BaseModel):
    __pydantic_resolve_expose__ = {'title': 'blog_title' }
    __pydantic_resolve_collect__ = {'comments': 'blog_comments' }
    id: int
    title: str

    comments: list[Comment] = []
    def resolve_comments(self, loader=LoaderDepend(blog_to_comments_loader)):
        return loader.load(self.id)

    comment_count: int = 0
    def post_comment_count(self):
        return len(self.comments)

class Comment(BaseModel):
    id: int
    content: str
    def post_content(self, ancestor_context):
        blog_title = ancestor_context['blog_title']
        return f'[{blog_title}] - {self.content}'

Notes:

  1. You can create multiple collectors.
  2. Collector uses a list internally to accumulate values. With flat=True, it uses extend to merge lists.
  3. You can implement your own collector by inheriting from ICollector.
from pydantic_resolve import ICollector

class CounterCollector(ICollector):
    def __init__(self, alias):
        self.alias = alias
        self.counter = 0

    def add(self, val):
        self.counter = self.counter + len(val)

    def values(self):
        return self.counter

collector can only be used in post and post_default_handler.

  • In post, you can collect descendant data from resolved fields or other object fields.
  • In post_default_handler, you can additionally collect descendant data from values returned by post methods.

** starting from v2.3.0, SendTo can replace pydantic_resolve_collect`**, they are exclusive.

from pydantic_resolve import ExposeAs, SendTo

class Blog(BaseModel):
    # __pydantic_resolve_expose__ = {'title': 'blog_title' }
    # __pydantic_resolve_collect__ = {'comments': 'blog_comments' }
    id: int
    title: Annotated[str, ExposeAs('blog_title')]

    comments: Annotated[list[Comment], SendTo('blog_comments')] = []
    def resolve_comments(self, loader=LoaderDepend(blog_to_comments_loader)):
        return loader.load(self.id)

dataloader

DataLoader can batch multiple concurrent async queries into a single request.

In pydantic-resolve, use LoaderDepend to manage DataLoaders.

Since v1.12.5, you can also use Loader. They are equivalent.

You can declare multiple DataLoaders in a single method.

from pydantic_resolve import LoaderDepend

class Blog(BaseModel):
    id: int
    title: str

    comments: list[Comment] = []
    async def resolve_comments(self,
                         loader1=LoaderDepend(blog_to_comments_loader),
                         loader2=LoaderDepend(blog_to_comments_loader2)):
        v1 = await loader1.load(self.id)  # list
        v2 = await loader2.load(self.id)  # list
        return v1 + v2

If a DataLoader defines class variables, you can pass parameters from Resolver.

class LoaderA(DataLoader):
    power: int
    async def batch_load_fn(self, keys: List[int]):
        return [ k** self.power for k in keys ]

data = await Resolver(loader_filters={LoaderA:{'power': 2}}).resolve(data)

If multiple DataLoaders of the same type use the same params, you can use global_loader_param to reduce boilerplate.

Use it carefully: global params can make configuration harder to reason about.

self._query_meta

It provides two pieces of information: fields and request_types. They describe the type info used after calling the dataloader.

This can help you narrow down the selected fields in the dataloader (e.g. SQL SELECT columns).

Because a single dataloader may be called by multiple request types, request_types is a list.

fields is the de-duplicated union of all request_types.fields.

class SampleLoader(DataLoader):
    async def batch_load_fn(self, keys):
        print(self._query_meta['fields']) # => ['id', 'name']
        print(self._query_meta['request_types']) # => [ {'name': Student, 'fields': ['id', 'name'] } ]

        data = await query_students(self._query_meta['fields'], keys)
        # select id, name from xxxxx

        return build_list(data, keys, lambda d: d.id)

class Student(BaseModel):
    id: int
    name: str

class ClassRoom(BaseModel):
    id: int
    name: str

    students: List[Student] = []
    def resolve_students(self, loader=LoaderDepend(SampleLoader)):
        return loader.load(self.id)

Helper Utilities

build_list, build_object

Used in a DataLoader to group fetched records by keys.

build_list returns a list of objects; build_object returns a single object.

Signature: build_list(data, keys, lambda d: d.key)

model_config

This decorator improves some web frameworks (like FastAPI) when generating JSON schema from response_model.

Using exclude=True can remove a field during Pydantic conversion, but in FastAPI-generated openapi.json, the field (e.g. name) may still appear in the schema definition. Adding the model_config() decorator can remove name from the schema.

Signature: model_config(default_required=True)

@model_config()
class Data(BaseModel):
    name: str = Field(default='', exclude=True)
from pydantic.dataclasses import dataclass

@dataclass
class Car:
    name: str
    used_years: int = field(default=0, metadata={'exclude': True})

Note: if you use pydantic v2 in FastAPI, FastAPI already handles similar behavior internally, so you may not need model_config.

ensure_subset

Signature: ensure_subset(base_kls)

If you only need a subset of fields but want to strictly ensure it is a valid subset, use ensure_subset.

If the base model changes and a field is no longer present, it raises AttributeError.

class Base(BaseModel):
    a: str
    b: int

@ensure_subset(Base)
class ChildA(BaseModel):
    a: str

mapper

Provides a conversion/mapping decorator.

class Data(BaseModel):
    id: int

    items: List[Item] = []

    @mapper(lambda x: do_some_conversion(x))
    def resolve_items(self, loader=LoaderDepend(ItemLoader)):
        return loader.load(self.id)

copy_dataloader_kls

Copy a DataLoader class. Useful when you need multiple parameterized DataLoaders with different parameters.

NewLoader = copy_dataloader_kls('NewLoader', OriginLoader)

Exceptions

  • ResolverTargetAttrNotFound: target field does not exist
  • LoaderFieldNotProvidedError: required Loader parameters are not provided in resolve
  • GlobalLoaderFieldOverlappedError: duplicated params between global_loader_params and loader_params
  • MissingCollector: the collector cannot be found; not defined on ancestor nodes
  • MissingAnnotationError: type annotation is missing when using LoadBy or other annotations that require type information